SEM II

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Biochemistry	Semester II	Theory	Core T-3	4

Broad Topic	Lecture	Lecture Topic		
	Number			
	Lecture 1	First and second laws of Thermodynamics.		
		Definitions of Gibb's Free Energy, enthalpy		
		and Entropy and mathematical relationship		
Bioenergetics		among them		
	Lecture 2	Standard free energy change and equilibrium		
		constant, Coupled reactions and additive		
		nature of standard free energy change		
	Lecture 3	Energy rich compounds: Phosphoenol		
		pyruvate, ATP		
	Lecture 4	General properties, classification of		
		carbohydrates, families of monosaccharides		
	Lecture 5	Structural concept of aldoses and ketoses,		
		trioses, tetroses, pentoses, and hexoses		
		(glucose and fructose). Stereo isomerism of		
		monosaccharides, epimers and anomers of		
		glucose, Mutarotation, optical isomerism		
	Lecture 6	Furanose and pyranose forms of glucose and		
Carbohydrates		fructose, Haworth projection formulae for		
		glucose; chair and boat forms of glucose		
	Lecture 7	Sugar derivatives, glucosamine,		
		galactosamine, muramic acid, N- acetyl		
		neuraminic acid, Disaccharides; concept of		
		reducing and non-reducing sugars,		
		occurrence and Haworth projections of		
		maltose, lactose, and sucrose		
	Lecture 8	Polysaccharides, storage polysaccharides,		
		starch and glycogen. Structural		
		Polysaccharides, cellulose and peptidoglycan.		
	Lecture 9	Fatty acids: definition, types, structures and		
		functions, essential fatty acids.		
	Lecture 10	Lipid: definition, nomenclature and		
	T / 11	classification with structures and properties		
T 1 1	Lecture 11	triacylglycerols, phosphoglycerides,		
Lipias		phosphatidylethanolamine,		
		phosphatidylcholine, sphingosine, ceramide,		
		sphingomyelins, cerebrosides and		
	T / 10	gangliosides		
	Lecture 12	Functions of lipid. Introduction of lipid		
		micelles, monolayers, bilayers.		
	Lecture 12	Functions of proteins Primary structures of		
	Lecture 15	runctions of proteins, Primary structures of		

		proteins: Amino acids, the building blocks of proteins. General formula of amino acid and concept of zwitterion
Proteins	Lecture 14	Titration curve of amino acid and its Significance, Classification, biochemical structure and notation of standard protein amino acids
	Lecture 15	Ninhydrin reaction. Non protein amino acids: Gramicidin, beta-alanine, D-alanine and D- glutamic acid
	Lecture 16	Secondary structure of proteins: Peptide unit and its salient features. The alpha helix, the beta pleated sheet and their occurrence in proteins
	Lecture 17	Tertiary and quaternary structures of proteins. Human haemoglobin structure, Quaternary structures of Proteins.
	Lecture 18	Structure of enzyme: Apoenzyme and cofactors, prosthetic group-TPP, coenzyme NAD, metal cofactors
	Lecture 19	Mechanism of action of enzymes: active site, specificity, enzyme kinetics, Michaelis-Menten equation and their transformations, Km and allosteric mechanism.
Enzymes	Lecture 20	Lock & key hypothesis, and Induced Fit hypothesis. Definitions of terms – enzyme unit, specific activity and turnover number
	Lecture 21	Multienzyme complex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase, Enzyme inhibition: competitive- sulfa drugs; non-competitive- heavy metal salts, uncompetitive.
	Lecture 22	Effect of pH and temperature, substrate concentration, enzyme concentration, time on enzyme activity
Vitamins and Nucleic Acids	Lecture 23	Classification and characteristics of Vitamins with suitable examples, sources and importance
	Lecture 24	Purine, pyrimidine bases, nucleoside, nucleotide-structure & properties
	Lecture 25	Types of DNA and RNA

Course / Paper Name	Class	Course Type	Course Code	Credit
Biochemistry	Semester II	Practical	Core P-3	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	F ~
Exp. 1	Week 1	2	Concept of pH and buffers, preparation of buffers – phosphate and acetate buffer
Exp. 2	Week 2	1	Qualitative/Quantitative tests for carbohydrates, reducing sugars, non-reducing sugars (DNS method)
Exp. 3	Week 3	1	Qualitative/Quantitative tests for proteins (Lowry method)
Exp. 3	Week 4	1	Qualitative/Quantitative tests for amino acids (Ninhydrine)
Exp.3	Week 5	1	Qualitative/Quantitative tests for DNA (DPA)
Exp. 3	Week 6	1	Qualitative/Quantitative tests for RNA (Orcinol)
Exp. 4	Week 7	2	Qualitative/Quantitative assay of amylase
Exp.5	Week 8	1	Study of enzyme kinetics – calculation of V _{max} , K _m , K _{cat} values
Exp. 6	Week 9	2	Study the effect of temperature, pH and Heavy metals on enzyme activity (amylase).
Exp. 7	Week 10	1	Estimation of any one vitamin – Ascorbic acid.

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Virology	Semester II	Theory	Core T-4	4

Broad Topic	Lecture	Lecture Topic			
	Number				
	Lecture 1	Introduction: Discovery of viruses, nature and			
		definition of viruses, general properties			
Nature and	Lecture 2	Concept of viroids, virusoids, satellite viruses			
Properties of		and Prions			
Viruses	Lecture 3	Structure of Viruses: Capsid symmetry,			
		enveloped and non-enveloped viruses			
	Lecture 4	Isolation, purification and cultivation of			
		viruses			
	Lecture 5	Viral taxonomy: Baltimore Classification			
	Lecture 6	Diversity, classification, lytic and lysogenic			
		cycle of T4/T2 phage			
Bacteriophages	Lecture 7	concept of early and late proteins, regulation			
		of transcription in lambda phage			
Viral	Lecture 8	Mode of viral transmission			
Transmission,	Lecture 9	Structure, Nucleic acid, Replication and			
Salient		Symptoms of : Adenovirus, Retrovirus			
features of	Lecture 10	Structure, Nucleic acid, Replication and			
viral nucleic		Symptoms of : Hepatitis B virus, Influenza			
acids and		virus			
Replication	Lecture 11	Assembly, budding and maturation of HIV			
	Lecture 13	Introduction to oncogenic viruses, Types of			
Viruses and	T / 14	oncogenic DNA and RNA viruses			
Cancer	Lecture 14	Concepts of oncogenes and proto-oncogenes			
Prevention &	Lecture 15	Antiviral compounds and their mode of action			
control of viral	Lecture 16	Interferon and their mode of action			
diseases	Lecture 17	General principles of viral vaccination.			
Applications of	Lecture 18	Use of viral vectors in cloning and expression			
Virology	Lecture 19	Gene therapy and Phage display			

Course / Paper Name	Class	Course Type	Course Code	Credit
Virology	Semester II	Practical	Core P-4	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	
Exp. 1	Week 1	1	Study of the structure of important animal viruses
			(Rhabdo) using electron micrographs
Exp. 1	Week 2	1	Study of the structure of important animal viruses
			(Retroviruses) using electron micrographs
Exp. 2	Week 3	1	Study of the structure of important plant viruses
			(TMV) using electron micrographs
Exp. 2	Week 4	1	Study of the structure of important plant viruses
			(Cucumber Mosaic Viruses) using electron
			micrographs
Exp. 3	Week 5	1	Study of the structure of important bacterial viruses
			(T4) using electron micrograph
Exp.3	Week 6	1	Study of the structure of important bacterial viruses
			(λ) using electron micrograph
Exp. 4	Week 7	2	Isolation and enumeration of bacteriophages (PFU)
			from water/sewage sample using double agar layer
			technique
Exp. 5	Week 8	2	Studying isolation and propagation of animal
			viruses by chick embryo technique
Exp.6	May to		Report a visit to any educational Institute/ Industry
	June		

SEM IV

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Microbial Genetics	Semester IV	Theory	Core T-8	4

Broad Topic	Lecture	Lecture Topic			
	Number				
	Lecture 1	Genome organization of E. coli			
	Lecture 2	Mutations and mutagenesis: Definition and			
Genome		types of Mutations			
Organization	Lecture 3	Physical and chemical mutagens; Molecular			
and		basis of mutations; Uses of mutations			
Mutations	Lecture 4	Reversion and suppression: True revertants;			
		Intra- and inter-genic suppression; Ames test;			
		Mutatorgenes			
	Lecture 5	Types of plasmids – F plasmid, R Plasmids,			
		colicinogenic plasmids, Ti plasmids, linear			
Plasmids		plasmids			
	Lecture 6	Plasmid replication and partitioning, Host			
		range, plasmid-incompatibility			
	Lecture 7	Plasmid amplification, Regulation of copy			
		number, curing of plasmids			
	Lecture 8	Mode of viral transmission			
	Lecture 9	Transformation - Discovery, mechanism,			
Mechanisms		Identification of recombinants			
of Genetic	Lecture 10	Conjugation - Discovery, mechanism, Hfr and F'			
Exchange		strains			
	Lecture 11	Transduction - Generalized transduction,			
		specialized transduction, LFT & HFT lysates			
	Lecture 12	Mapping by recombination and co-transduction			
		of markers			
	Lecture 13	Features of T4 genetics,			
Phage	Lecture 14	Genetic basis of lytic versus lysogenic switch of			
Genetics		phage lambda			
	Lecture 15	Prokaryotic transposable elements			
Transposable	Lecture 16	Insertion Sequences, composite and non-			
elements		composite transposons, Replicative and Non			
		replicative transposition			
	Lecture 17	Uses of transposons and transposition			

Course / Paper Name	Class	Course Type	Course Code	Credit
Microbial Genetics	Semester IV	Practical	Core P-8	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	
Exp. 1	Week 1	1	Preparation of Master and Replica Plates
Exp. 2	Week 2	2	Study the effect of chemical (HNO2) and physical
			(UV) mutagens on bacterial cells
Exp. 3	Week 3	2	Study survival curve of bacteria after exposure to
			ultraviolet (UV) light
Exp. 4	Week 4	1	Isolation of Plasmid DNA from <i>E.coli</i>
Exp. 5	Week 5	1	Study different conformations of plasmid DNA
			through Agaraose gel electrophoresis.
Exp.6	Week 6	1	Demonstration of Bacterial Conjugation
Exp. 7	Week 7	1	Demonstration of bacterial transformation
Exp. 7	Week 8	1	Demonstration of bacterial transduction
Exp.8	Week 9	1	Demonstration of AMES test

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Class		Course	Course	Credit
Name		Type	Code	
Environmental Microbiology	Semester IV	Theory	Core T-9	4

Broad Topic	Lecture	Lecture Topic
	Number	
	Lecture 1	Structure and function of ecosystems,
	Lecture 2	Terrestrial Environment: Soil profile and soil
Microorganisms		microflora, Aquatic Environment: Microflora
and their		of fresh water and marine habitats,
Habitats		Atmosphere: Aeromicroflora and dispersal of
		microbes
	Lecture 3	Extreme Habitats: Extremophiles: Microbes
		thriving at high & low temperatures, pH, high
		hydrostatic & osmotic pressures, salinity, &
		low nutrient levels
	Lecture 4	Microbe interactions: Mutualism, synergism,
		commensalism, competition, amensalism,
Microbial		parasitism, Predation
Interactions	Lecture 5	Microbe-Plant interaction: Symbiotic and
		non-symbiotic interactions
	Lecture 6	Microbe-animal interaction: Microbes in
		ruminants, nematophagus fungi and
		symbiotic luminescent bacteria
	Lecture 7	Carbon cycle: Microbial degradation of
		cellulose, hemicelluloses, lignin and chitin
	Lecture 8	Nitrogen cycle: Nitrogen fixation,
Biogeochemical		ammonification, nitrification, denitrification
Cycling		and nitrate reduction
	Lecture 9	Phosphorus cycle: Phosphate immobilization
		and solubilisation
	Lecture 10	Sulphur cycle: Microbes involved in sulphur
		cycle, Other elemental cycles: Iron
	Lecture 11	Solid Waste management: Sources and types
Waste		of solid waste, Methods of solid waste
Management		disposal (composting and sanitary landfill)
	Lecture 13	Liquid waste management: Composition and
		strength of sewage (BOD and COD), Primary,
		secondary (oxidation ponds, trickling filter)
	Lecture 14	Secondary Treatment (activated sludge
		process and septic tank) and tertiary sewage
		treatment.

Microbial	Lecture 15	Principles and degradation of common		
Bioremediation		pesticides		
	Lecture 16	Degradation of organic (hydrocarbons, oil		
		spills) and inorganic (metals) matter,		
		biosurfactants.		
	Lecture 17	Treatment and safety of drinking (potable)		
Water		water, methods to detect Potability of water		
Potability		samples:		
	Lecture 18	standard qualitative procedure: presumptive		
		test/MPN test, confirmed and completed tests		
		for faecal coliforms		
	Lecture 19	Membrane filter technique and		
		Presence/absence tests		

Course / Paper Name	Class	Course Type	Course Code	Credit
Environmental Microbiology	Semester IV	Practical	Core P-9	2

Exp.	Class	No. of			
Number	Plan	Classes	Experiment Name		
		allotted			
Exp. 1	Week 1	1	Analysis of soil - pH, moisture content, water		
			holding capacity, percolation, capillary action.		
Exp.2	Week 2	2	Isolation of microbes (bacteria & fungi) from soil		
			(28°C & 45°C).		
Exp. 3	Week 3	2	Isolation of microbes (bacteria & fungi) from		
			rhizosphere and rhizoplane.		
Exp. 4	Week 4	3	Assessment of microbiological quality of water.		
Exp. 5	Week 5	1	Determination of BOD of waste water sample.		
Exp.6	Week 6	2	Study the presence of microbial activity by detecting		
			(qualitatively) enzymes (dehydrogenase) in soil.		
Exp. 6	Week 7	2	Study the presence of microbial activity by detecting		
			(qualitatively) enzymes (amylase, urease) in soil.		
Exp. 7	Week 8	2	Isolation of Rhizobium from root nodules.		

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Pape	r Class	Course	Course	Credit	
Name		Туре	Code		
Food & Dairy	Semester IV	7 Theory	Core T-10	4	
Microbiology					
Broad Topic	Lecture	Lecture Topic			
	Number				
	Lecture 1	Intrinsic and	extrinsic fac	tors that affect	
Foods as a		growth and sur	vival of microb	bes in foods	
substrate for	Lecture 2	Natural flora a	nd source of o	contamination of	
microorganisms		foods in genera	l.	1 0 1	
Microbial	Lecture 3	Principles, Spo	ilage of vegetal	oles, fruits	
spoilage of various foods	Lecture 4	Spoilage of m bread, canned	neat, eggs, m Foods	ilk and butter,	
Principles and	Lecture 5	Principles, physical methods of food preservation: temperature (low, high,			
methods of	Lecture 6	irradiation hydrostatic pressure high voltage			
food	Desture o	pulse, microwave processing and aseptic			
preservation		packaging,			
	Lecture 7	chemical methods of food preservation: salt, sugar, organic acids, SO2, nitrite and nitrates, ethylene oxide			
	Lecture 8	Antibiotics and	Bacteriocins		
		Dairy starter cultures, fermented dairy products: yogurt, acidophilus milk, dahi and cheese			
Fermented foods	Lecture 9	Other fermented foods: dosa, sauerkraut, soy sauce			
	Lecture 10	Probiotics: Health benefits, types of microorganisms used, probiotic foods available in market.			
Food borne diseases	Lecture 11	Food intoxicat Clostridium bot	tions: Staphyl culinum	lococcus aureus,	
(causative agents, foods	Lecture 12	Mycotoxins;			
involved,	Lecture 13	Food infection	ns: <i>Bacillus</i>	cereus, Vibrio	
symptoms and		parahaemolytic	cus		
preventive Lecture 14 Food inf			: Escherichia	coli,	
measures)		Salmonellosis,			
	Lecture 15	Food infections Campylobacter	: Yersinia ente jejuni	erocolitica and	

Food sanitation	Lecture 16	НАССР
and control	Lecture 17	Indices of food sanitary quality and sanitizers
Cultural and	Lecture 18	Cultural and rapid detection methods of food
rapid detection		borne pathogens
methods of		
food borne		
pathogens in	Lecture 19	Predictive microbiology
foods and		
introduction		
to predictive		
microbiology		

Course / Paper Name	Class	Course Type	Course Code	Credit
Food & Dairy Microbiology	Semester IV	Practical	Core P-10	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	
Exp. 1	Week 1	1	MBRT of milk samples and their standard plate
			count.
Exp. 2	Week 2	1	Alkaline phosphatase test to check the efficiency of
			pasteurization of milk
Exp. 3	Week 3	2	Isolation of any food borne bacteria from food
			products.
Exp. 4	Week 4	2	Isolation of spoilage microorganisms from spoiled
			vegetables/fruits.
Exp. 5	Week 5	2	Isolation of spoilage microorganisms from bread.
Exp. 6	Week 6	1	Preparation of Yogurt/Dahi.

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Microbial	Semester IV	Theory	SEC-2	4
Diagnosis In				
Health Clinics				

Broad Topic	Lecture	Lecture Topic		
	Number			
	Lecture 1	Bacterial and Viral Diseases of various		
		human body systems		
Importance	Lecture 2	Fungal and Protozoan Diseases of various		
of Diagnosis		human body systems		
of Diseases	Lecture 3	Disease associated clinical samples for diagnosis		
Collection	Lecture 4	Collection of clinical samples (Sputum,		
of Clinical		Skin, Blood, Urine and Stool) with proper		
Samples		precautions		
	Lecture 5	Method of transport of clinical samples to		
		the laboratory and storage		
D	Lecture 6	Examination of sample by staining - Gram		
Direct		staining, Ziehl-Neelson staining, Giemsa		
Microscopic	T / 77	staining		
Examination	Lecture 7	Preparation and use of culture media -		
and Culture	I a stas us O	Blood agar, Chocolate agar		
	Lecture 8	Preparation and use of culture media -		
		Lowenstein-Jensen medium, macConkey		
	Leoture 0	agai Serological Methods Agglutination FUSA		
Serological	Lecture 9	Immunofluoresence		
and	Lecture 10	Nucleic acid based methods -PCR. Nucleic		
Molecular	2000010 10	acid probes		
Methods				
Kits for	Lecture 11	Typhoid, Dengue		
Rapid	Lecture 12	HIV		
Detection of				
Pathogens				
	Lecture 13	Determination of resistance/sensitivityof		
Testing for		bacteria against antibiotic		
Antibiotic		(Penicillin/Streptomycin) using disc		
Sensitivity	• · · • •	diffusion method		
in Bacteria	Lecture 14	Determination of minimal inhibitory		
		concentration (MIC) of an antibiotic		
		(Penicillin/ Streptomycin)		

SEM VI

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Medical Microbiology	Semester VI	Theory	Core T-13	4

Broad Topic	Lecture	Lecture Topic	
	Number		
	Lecture 1	Normal microflora of skin, respiratory tract,	
Normal		gastrointestinal tract, urogenital tract	
microflora of	Lecture 2	Host pathogen interaction: Infection, Invasion,	
the human		Pathogen, Pathogenicity, Virulence,	
body and host		Toxigenicity, Carriers, reservoir	
pathogen	Lecture 3	Structure of Viruses: Capsid symmetry,	
interaction		enveloped and non-enveloped viruses	
	Lecture 4	Opportunistic infections, Nosocomial	
		infections, Epidemic, Endemic, Pandemic	
	Lecture 5	Symptoms, mode of transmission, prophylaxis	
		and control of Respiratory Diseases:	
		Streptococcus pyogenes,	
	Lecture 6	Symptoms, mode of transmission, prophylaxis	
		and control of Respiratory Diseases:	
Bacterial		Mycobacterium tuberculosis	
diseases	Lecture 7	Symptoms, mode of transmission, prophylaxis	
		and control of Gastrointestinal Diseases:	
		Salmonella typhi,	
	Lecture 8	Symptoms, mode of transmission, prophylaxis	
		and control of Gastrointestinal Diseases: Vibrio	
		cholerae	
	Lecture 9	Symptoms, mode of transmission, prophylaxis	
		and control of Bacillus anthracis & Treponema	
		pallidum	
	Lecture 10	Symptoms, mode of transmission, prophylaxis	
Viral diseases		and control of AIDS	
	Lecture 11	Symptoms, mode of transmission, prophylaxis	
		and control of Ebola	
	Lecture 12	Symptoms, mode of transmission, prophylaxis	
		and control of Dengue	
	Lecture 13	Symptoms, mode of transmission, prophylaxis	
		and control of Chikungunya	
	Lecture 14	Symptoms, mode of transmission, prophylaxis	
		and control of Japanese Encephalitis	
Protozoan	Lecture 15	Symptoms, mode of transmission, prophylaxis	

diseases		and control of Malaria,
	Lecture 16	Symptoms, mode of transmission, prophylaxis
		and control of Kala-azar
Fungal	Lecture 17	Transmission, symptoms and prevention of
diseases		Cutaneous mycoses: Tineapedis (Athlete's foot)
	Lecture 18	Transmission, symptoms and prevention of
		Systemic mycoses: Histoplasmosis
	Lecture 19	Transmission, symptoms and prevention of
		Opportunistic mycoses: Candidiasis
Antimicrobial	Lecture 20	Modes of action of Antibacterial, Antifungal
agents:		and Antiviral agents with example
General		
characteristics		
and mode of		
action		

Course / Paper Name	Class	Course Type	Course Code	Credit
Medical Microbiology	Semester VI	Practical	Core P-13	2

Exp.	Class	No. of		
Number	Plan	Classes	Experiment Name	
		allotted		
Exp. 1	Week 1	2	Identify bacteria (Bacillus, Staphylococcus, E. coli,	
			Pseudomonas,) on the basis of cultural,	
			morphological and biochemical characteristics	
Exp. 2	Week 3	2	Study of composition and use of important	
			differential media for identification of bacteria:	
			EMBAgar, McConkey agar, Mannitol salt agar,	
			TCBS	
Exp. 3	Week 5	2	Study of bacterial flora of skin by swab method	
Exp. 4	Week 7	2	Perform antibacterial sensitivity by Agar cup	
			method	
Exp. 5	Week 8	2	Determination of minimal inhibitory concentration	
			(MIC) of an antibiotic (Penicillin/ Streptomycin)	
Exp.6	Week 10	1	Study of various stages of Malarial parasite in	
			RBC using permanent mount	

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Recombinant DNA Technology	Semester VI	Theory	Core T-14	4

Broad Topic	Lecture	Lecture Topic		
	Number			
Introduction	Lecture 1	Milestones in genetic engineering and		
to Genetic		biotechnology		
Engineering				
	Lecture 2	Mode of action and applications of Type I, II and		
		and the structuon endonuclease in genetic		
Molecular	Lecture 3	Definition and function of restriction site		
Cloning-	Lecture 5	linkers adaptors Topoisomerase DNA ligase		
Tools and		Genomic library		
Strategies	Lecture 4	DNA Modifying enzymes: Terminal		
_		deoxynucleotidyl transferase, kinases,		
		phosphatase		
	Lecture 5	Definition and Properties of following Cloning		
		Vectors: pBR322, pUC8, Bacteriophage lambda,		
		M13, Cosmids		
	Lecture 6	Cloning Vectors: BACs and YACs Mammalian		
		SV40-based expression vectors		
Methods in	Lecture 7	Gene delivery: Microinjection, electroporation,		
Molecular		biolistic method (gene gun), liposome		
Cloning	Lecture 8	Viral mediated delivery, Agrobacterium - mediated delivery		
	Lecture 9	Agarose gel electrophoresis & SDS-PAGE		
	Lecture 10	Southern, Northern and Western blotting, dot		
		blot and DNA microarray analysis		
DNA	Lecture 11	Basic concept of PCR, RT-PCR, Real-Time PCR		
Amplification	Lecture 13	Sanger's method of DNA Sequencing: traditional		
and DNA		and automated sequencing		
sequencing	Lecture 14	Primer walking and shotgun sequencing		
Construction	Lecture 15	Genomic and cDNA libraries: Preparation and		
and		uses		
Screening of	Lecture 16	Screening of libraries : Colony hybridization and		
Genomic and		colony PCR		
cDNA	Lecture 17	General principles of viral vaccination.		
libraries	Lecture 18	Chromosome walking and chromosome		
	I / 10	Jumping		
Applications	Lecture 19	Products of recombinant DNA technology:		
0I Decembinant	Leature 00	IIIsuiiii, nGH, Anusense molecules		
	Lecture 20	Gene inerapy, recombinant vaccines,		
DNA Toobrolog-		proteinengineering and site directed		
rechnology		mutagenesis		

Course / Paper Name	Class	Course Type	Course Code	Credit
Recombinant DNA Technology	Semester VI	Practical	Core P-14	2

Exp.	Class	No. of		
Number	Plan	Classes	Experiment Name	
		allotted		
Exp. 1	Week 1	1	Perform bacterial Transformation by standard	
			method	
Exp. 2	Week 2	1	Digestion of DNA using restriction enzymes and	
			analysis by agarose gel electrophoresis	
Exp.3	Week 3	1	Ligation of DNA fragments	
Exp. 4	Week 4	1	Interpretation of sequencing gel electropherograms	
Exp. 5	Week 5	1	Designing of primers for DNA amplification	
Exp.6	Week 6	1	Demonstration of amplification of DNA by PCR	
Exp. 7	Week 7	1	Perform Southern blotting	

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper Name	Class	Course Type	Course Code	Credit
Microbes In	Semester VI	Theory	DSE-3	4
Sustainable				
Agriculture And				
Development				

Broad Topic	Lecture	Lecture Topic		
	Number			
	Lecture 1	Soil as Microbial Habitat		
Soil Microbiology	Lecture 2	Diversity and distribution of		
		microorganisms in soil		
	Lecture 3	Mineralization of cellulose, hemicelluloses,		
Mineralization of		lignocelluloses, lignin and humus		
Organic &	Lecture 4	Mineralization of phosphate, nitrate, silica,		
Inorganic Matter		potassium		
Microbial Activity	Lecture 5	Carbon dioxide, methane - production and		
in Soil		control		
Microbial Control	Lecture 6	Microorganisms used as biocontrol agents		
of Soil Borne		against Microbial plant pathogens		
Plant Pathogens	Lecture 7	Microorganisms used as biocontrol agents		
		against Insects & Weeds		
Biofertilization,	Lecture 8	General concept of Biofertilizer		
Phytostimulation,	Lecture 9	Phosphate solubilizing Microorganism		
Bioinsecticides	Lecture 10	Nitrogen fixing Microorganism (Symbiotic		
		and Non Symbiotic)		
	Lecture 11	Principle, advantages and processing		
Secondary		parameters of Biomanure		
Agriculture	Lecture 13	Principle, advantages and processing		
Biotechnology		parameters Biofuel		
	Lecture 14	Principle, advantages and processing		
		parameters of Biogas		
GM crops	Lecture 15	Advantages, social and environmental		
		aspects of Bt crops		
	Lecture 16	Golden rice, transgenic animals		

Course / Paper Name	Class	Course Type	Course Code	Credit
Agriculture	Semester VI	Practical	DSE-3	2

Exp. Number	Class Plan	No. of Classes allotted	Experiment Name
Exp. 1	Week 1 -3	3	Study soil profile
Exp. 2	Week 3 -5	3	Study microflora of different types of soils
Exp. 3	Week 6	2	Isolation and characteristics of Rhizobium from leguminous plant
Exp. 4	Week 4	1	Demonstration of biogas plant
Exp. 5	Week 5	2	Isolation of cellulose degrading microorganisms

Microbiology Hons. (CBCS) Syllabi module for Courses with **Lectures**

Course / Paper	Class	Course	Course	Credit
Name		Туре	Code	
Instrumentation &	Semester VI	Theory	DSE-4	4
Biotechniques				

Broad Topic	Lecture	Lecture Topic	
	Number		
	Lecture 1	Brightfield and darkfield microscopy	
	Lecture 2	Fluorescence Microscopy Phase contrast	
Microscopy		Microscopy, Confocal Microscopy	
	Lecture 3	Electron Microscopy (Scanning and	
		Transmission Electron Microscopy) and	
		Micrometry	
	Lecture 4	Principles and applications of paper	
		chromatography (including Descending	
		and 2-D), Thin layer chromatography.	
Chromatography	Lecture 5	Column packing and fraction collection.	
		Gel filtration chromatography, ion	
		exchange chromatography and affinity	
		chromatography	
	Lecture 6	GLC, HPLC	
	Lecture 7	Principle and applications of native	
		polyacrylamide gel electrophoresis &	
Electrophoresis		Agarose gel electrophoresis	
	Lecture 8	SDS- polyacrylamide gel electrophoresis,	
		2D gel electrophoresis, Isoelectric focusing	
	Lecture 9	Principle and use of study of absorption	
Spectrophotometry		spectra of biomolecules. Analysis of	
		biomolecules using UV and visible range	
	Lecture 10	Colorimetry and turbidometry	
	Lecture 11	Preparative and analytical centrifugation	
	Lecture 13	Fixed angle and swinging bucket rotors.	
Centrifugation RCF and		RCF and	
		sedimentation coefficient	
	Lecture 14	principle and application of differential	
		centrifugation,	
	Lecture 15	density gradient centrifugation and	
		ultracentrifugation	

Course / Paper Name	Class	Class Course Type		Credit
Instrumentation & Biotechniques	Semester VI	Practical	DSE-4	2

Exp.	Class	No. of	
Number	Plan	Classes	Experiment Name
		allotted	
Exp. 1	Week 1	1	Study of fluorescent micrographs to visualize
			bacterial cells
Exp. 2	Week 2	1	Ray diagrams of phase contrast microscopy and
			Electron microscopy.
Exp. 3	Week 3	1	Separation of mixtures by paper / thin layer
			chromatography.
Exp.4	Week 4	1	Demonstration of column packing in any form of
			column chromatography.
Exp. 5	Week 5	1	Separation of protein mixtures by any form of
			chromatography.
Exp.6	Week 6	1	Separation of protein mixtures by Polyacrylamide
			Gel Electrophoresis (PAGE).
Exp. 7	Week 7	1	Determination of λ max for an unknown sample
			and calculation of extinction coefficient.
Exp. 8	Week 8	1	Separation of components of a given mixture using
			a laboratory scale centrifuge.
Exp.9	Week 9		Industrial Tour